Abstract
This study investigated the toxicity of trichlorfon (TCF) to the freshwater algae Chlamydomonas reinhardtii, as well as its biodegradation and metabolic fate. The growth of C. reinhardtii decreased with increasing TCF concentration, and the maximum inhibition ratio was 51.3% at 200 mg L-1 TCF compared to the control. Analyses of pigment content, chlorophyll fluorescence, and antioxidant enzymes indicated that C. reinhardtii can produce resistance and acclimatize to the presence of TCF. The variations in pH during cultivation suggested that photosynthetic microalgae have innate advantages over bacteria and fungi in remediating TCF. A 100% biodegradation rate was achieved at a maximum concentration of 100 mg L-1 TCF. Ten metabolites were identified by GC-MS, and the degradation pathways of TCF by the algae were proposed. This research demonstrated that C. reinhardtii is highly tolerant to and can efficiently degrade TCF. Thus, C. reinhardtii can be used to remove traces of TCF from natural water environments and to treat TCF-contaminated wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.