Abstract

The toxicity, bioaccumulation, and biotransformation of citrate and polyvinylpyrrolidone (PVP) coated silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) in marine organisms via marine sediment exposure was investigated. Results from 7-d sediment toxicity tests indicate that AgNP-citrate and AgNP-PVP did not exhibit toxicity to the amphipod (Ampelisca abdita) and mysid (Americamysis bahia) at ≤75 mg/kg dry wt. A 28-d bioaccumulation study showed that Ag was significantly accumulated in the marine polychaete Nereis virens (N. virens) in the AgNP-citrate, AgNP-PVP and a conventional salt (AgNO3) treatments. Synchrotron X-ray absorption spectroscopy (XAS) results showed the distribution of Ag species in marine sediments amended with AgNP-citrate, AgNP-PVP, and AgNO3 was AgCl (50–65%) > Ag2S (32–42%) > Ag metal (Ag0) (3–11%). In N virens, AgCl (25–59%) and Ag2S (10–31%) generally decreased and, Ag metal (32–44%) increased, relative to the sediments. The patterns of speciation in the worm were different depending upon the coating of the AgNP and both types of AgNPs were different than the AgNO3 salt. These results show that the AgNP surface capping agents influenced Ag uptake, biotransformation, and/or excretion. To our knowledge, this is the first demonstration of the bioaccumulation and speciation of AgNPs in a marine organism (N. virens).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call