Abstract
Microcystin-leucine arginine (MC-LR), a representative cyanobacterial toxin, poses an increasing and serious threat to aquatic ecosystems. Despite investigating its toxic effects in various organisms and cells, the toxicity to tissue regeneration and stem cells in vivo still needs to be explored. Planarians are ideal regeneration and toxicology research models and have profound implications in ecotoxicology evaluation. This study conducted a systemic toxicity evaluation of MC-LR, including morphological changes, growth, regeneration, and the underlying cellular and molecular changes after MC-LR exposure, which were investigated in planarians. The results showed that exposure to MC-LR led to time- and dose-dependent lethal morphological changes, tissue damage, degrowth, and delayed regeneration in planarians. Furthermore, MC-LR exposure disturbed the activities of antioxidants, including total superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, and total antioxidant capacity, leading to oxidative stress and DNA damage, and then reduced the number of dividing neoblasts and promoted apoptosis. The results demonstrated that oxidative stress and DNA damage induced by MC-LR exposure caused apoptosis. Excessive apoptosis and suppressed neoblast activity led to severe homeostasis imbalance. This study explores the underlying mechanism of MC-LR toxicity in planarians and provides a basis for the toxicity assessment of MC-LR to aquatic organisms and ecological risk evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.