Abstract
ABSTRACTPrevious work has suggested that endogenous sulfhydryls, such as glutathione (GSH) and cysteine, are involved in the uptake and toxicity of HgCh2- To study this possibility, uptake and toxicity of synthesized Hg(SG)2, Hg(cysteinylglycine)2 [Hg(CYS-GLY)2] and Hg(CYS)2 were investigated in rabbit renal proximal tubule suspensions (RPT). The intracellular K+ was used as a toxicity indicator, and the mercury content in the tubules was measured by proton induced x-ray emission analysis. The toxicity rank order of the three synthesized mercury-thiol-complexes from the highest to the lowest was: Hg(CYS)2 > Hg(CYS-GLY)2 > Hg(SG)2- However, no significant difference among the mercury contents in the tubules exposed to these synthesized mercury-thiol-complexes was detected. Acivicin (0.25mM), an inhibitor of γ -glutamyltranspeptidase (GGT), decreased the toxicity of Hg(SG)2 in a manner that did not decrease the uptake of mercury in the tubules. This suggests that the toxicity of Hg(SG)2 requires processing to Hg(CYS-GLY)2 or Hg(CYS)2, while Hg(SG)2 may be taken up by the tubules via Na+-dependent GSH transporter since 10 mM acivicin, an inhibitor of this transporter dramatically decreased the uptake of Hg(SG)2. Organic anion transporter plays a minor role, if any, in the toxicity and uptake of Hg(SG)2 and Hg(CYS)2 since p-aminohippuric acid (PAH), an inhibitor of organic anion transporter, did not have significant effect on their uptake and toxicity. L-phenylalanine, an inhibitor of the neutral amino acid decreased the uptake of mercury, but to a lesser extent. This suggested that neutral amino acid transporter seemed to play a role, in part, in the toxicity and uptake of synthesized Hg(CYS)2- In summary, the data suggested that basolateral transport is important for the toxicity of the three synthesized mercury-thiol-complexes, and a variety of mechanisms are involved in the toxicity and uptake of these complexes in isolated rabbit RPT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.