Abstract

The potential ecological risks of nanoplastics (NPs) may be inaccurately assessed in some studies as they fail to consider the impact of environmental factors and their interactive effects. Here, the effects of six representative environmental factors (N, P, salinity, DOM (dissolved organic matter), pH and hardness) on NPs' toxicity and mechanism to microalgae are investigated based on the surface water quality data in Saskatchewan watershed, Canada. Our 10 sets of 26–1 factorial analysis reveal the significant factors and their interactive complexity towards 10 toxic endpoints from cellular and molecular levels. This is the first time to study the toxicity of NPs to microalgae under interacting environmental factors in high-latitude aquatic ecosystems of Canadian prairie. We find that microalgae become more resistant to NPs in N-rich or higher pH environments. Surprisingly, with the increase of N concentration or pH, the inhibitory effect of NPs on microalgae growth even became a promotion effect with the decreased inhibition rate from 10.5 % to −7.1 % or from 4.3 % to −0.9 %, respectively. Synchrotron-based Fourier transform infrared spectromicroscopy analysis reveals that NPs can induce alterations in the content and structure of lipids and proteins. DOM, N*P, pH, N*pH and pH*hardness have a statistically significant effect on NPs' toxicity to biomolecular. The toxicity levels of NPs across Saskatchewan watersheds are evaluated and we find that NPs could have the greatest inhibition on microalgae growth in Souris River. Our findings indicate that multiple environmental factors should be considered during the ecological risk assessment of emerging pollutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.