Abstract

Western flower thrips (WFT), Frankliniella occidentalis, has become an important pest of vegetables worldwide, due to its economic damage to crop production. In order to control WFT, chemical insecticides are widely used. However, WFT has developed a high resistance against many kinds of insecticides. Na+, K+-ATPase, playing an important role in the ionic transmission across the membrane, is commonly considered to be the target of several xenobiotic compounds. However, whether the Na+, K+-ATPase can be used as one of the target sites for controlling WFT is still unknown. In this study, resistance levels of WFT to four insecticides (chlorpyrifos, beta cypermethrin, abamectin, and thiamethoxam) were measured. It was found that all four insecticides exhibited significant inhibitory effects on WFT, especially on nymphs. The activity of Na+, K+-ATPase was estimated after the treatment of four insecticides. Additionally, mRNA expression levels of three Na+, K+-ATPase α-subunit isoforms (X1, X2 and X3) were detected using RT-qPCR. The transcription profile of three Na+, K+-ATPase α-subunit isoforms were diverse after treatment by these four insecticides, which indicated that these isoforms might play different roles in the tolerance to insecticides. The results suggested that Na+, K+-ATPase can obviously be inhibited by these four classes of insecticide, and may serve as the new target for controlling WFT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.