Abstract

Toxicity of products from polyester hydrolysis such as succinic acid (SA), adipic acid (AA), mandelic acid (MA), terephthalic acid (TA), 1,4-butanediol (1,4-B), ethylene glycol (EG), styrene glycol (SG) and 1,4-cyclohexane dimethanol (1,4-C) was evaluated by phytotoxicity test on germination of young radish seeds and by cytotoxicity test on HeLa cells. The phytotoxicity test revealed SG > MA > 1,4-C > AA ≈ SA > TA ≈ EG > 1,4-B in order of decreasing toxicity taking into consideration the growth behavior after germination as well as the percentage of germination. Toxicity on HeLa cells decreased in slightly different order compared to that on young radish seeds, i.e. SG > 1,4-C > MA > TA > SA > AA > EG > 1,4-B. Tests for the phytotoxicity and for cytotoxicity indicated that the aromatic compounds were more harmful than the aliphatic ones. Each group of 4 strains which grew most rapidly on each agar plate containing SA, AA, MA, TA, 1,4-B, EG, SG and 1,4-C respectively as a sole carbon source was identified by the fatty acid methyl esters analysis. The modified Sturm test was carried out using the single isolated strain, an activated sludge or a mixed soil to measure the rate of mineralization of the compounds into carbon dioxide. The aliphatic compounds were mineralized more easily than the aromatic compounds. 1,4-C showed the most exceptionaly slow degradation. A scrutiny of residual 1,4-C after degradation is required before polyesters containing 1,4-C could be classified into compostable because 1,4-C has detrimental effects on young radish seeds and HeLa cells and has a tendency to accumulate in the environment due to its slow degradability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call