Abstract

Nonylphenol (NP) toxicity limits the improvements in its algal remediation efficiency. This study comprehensively investigated the performance and mechanism of NaHCO3-driving effects on NP-exposed algae. The results showed that NaHCO3 enhanced algal resistance to NP and the corresponding EC50 values increased 1.31–4.25 times. Further, the toxicological effects of NP reduced with increasing pyrenoid volume and chlorophyll and carotenoids production, and decreasing cellular damage degree. Moreover, the concentration of extracellular polymeric substances was enhanced and more NP adsorption sites were formed. Consistently, RNA-seq demonstrated significant expression alterations in genes related to energy metabolism, cellular synthesis, photosynthesis, and carbon fixation. Besides, NP biodegradation rate was increased by 15.2 % and 11.1 % in the 1, and 4 mg/L NP treatments, respectively. Identification of degradation intermediates and their toxicity via Ecological Structure Activity Relationship program showed that NaHCO3 accelerated sequential α-C removal from NP in algae with faster generation of less toxic metabolites, namely, 4-ethylphenol, 4-cresol and 4-hydroxybenzoic acid. This study provides new insights into the role of NaHCO3 in toxicity alleviation and metabolism enhancement of NP in algae and can assist NP bioremediation efforts in aquatic environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.