Abstract

Ethnopharmacological relevanceThe genus Bupleurum includes approximately 200 species that are widely distributed in the Northern Hemisphere, Eurasia and North Africa. Certain species of this genus have long been used as antiphlogistic, antipyretic and analgesic agents in traditional folk medicine. As described in the Chinese Pharmacopoeia, the roots of Bupleurum chinense DC. and B. scorzonerifolium Willd. are the herbal materials that compose Chaihu (Radix Bupleuri), a well-known TCM herb. Aim of the reviewThis review aims to provide up-to-date and comprehensive information regarding the distribution, toxicity, molecular mechanism and relatively new methods for the qualitative and quantitative determination of polyacetylenes in different Bupleurum species. MethodThe information needed for this paper were sourced from publishing sites such as Elsevier, science Direct, PubMed; electronic search engines such as Scopus and Web of Science, Google scholar; other scientific database sites for chemicals such as ChemSpider, PubChem, SciFinder, and also from on line books. ResultsPolyacetylenes, which are widely distributed in genus Bupleurum of the Apiaceae family, have high toxicity. Among polyacetylenes, bupleurotoxin, acetylbupleurotoxin and oenanthotoxin have strong neurotoxicity. Through previous research, it was found that the toxicity of Bupleurum polyacetylenes manifested as epileptic seizures, with the target of toxicity being the brain. The neurotoxicity of polyacetylenes exhibits a relationship with the γ-aminobutyric acid (GABA) receptor pathway, and polyacetylenes have been shown to inhibit GABA-induced currents (IGABA) in a competitive manner. ConclusionsThe plants of genus Bupleurum have been used in traditional medicine for thousands of years. However, certain species of this genus are poisonous, and it was attributed to the high content of polyacetylenes. The present review indicates that certain polyacetylenes in the genus Bupleurum have highly neurotoxic effects. The major challenge with regard to toxic polyacetylenes is to test their neurotoxic effects in vivo as well as in further preclinical studies, which will require large amounts of purified polyacetylenes. More reference substances should be prepared, and sophisticated analytical technologies should be developed to comprehensively assess the quality of Radix Bupleuri herbs. These investigations will be helpful for further utilization of the plants of genus Bupleurum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call