Abstract

The effect of allelochemicals released by toxic species in plankton community is often taken into account to reveal plankton biodiversity. Using a minimal chemostat model we show that the interaction between toxic and non‐toxic phytoplankton species with changing competitive effects among species due to allelopathy helps to promote the stable coexistence of many species on a single resource and hence can solve the paradox of plankton. We emphasize toxic phytoplankton as a keystone species that strongly uncovers its allelochemicals on other non‐toxic phytoplankton and enhances the species persistence and diversity in aquatic ecosystems. In addition, we analyze the consistency of ecosystem functioning and species diversity using a number of approaches, such as sampling hypothesis with selection and complementarity effects, cascading extinction–reinvasion, and examining system dynamics at different enrichment levels and toxicity. Our results suggest that chemostats with one toxic and one or more nontoxic phytoplankton species can be used for the experimental verification of the stable coexistence of many species on a single resource in aquatic ecology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.