Abstract

The recA gene of Escherichia coli is the prototype of therecA/RAD51/DMC1/uvsX gene family of strand transferases involved in genetic recombination. In order to find mutations in the recA gene important in catalytic turnover, a genetic screen was conducted for dominant lethal mutants. Eight single amino acid substitution mutants were found to prevent proper chromosome segregation and to kill cells in the presence or absence of an inducible SOS system. All mutants catalyzed some level of recombination and constitutively stimulated LexA cleavage. The mutations occur at the monomer-monomer interface of the RecA polymer or at residues important in ATP hydrolysis, implicating these residues in catalytic turnover. Based on an analysis of the E96D mutant, a model is presented in which slow RecA-DNA dissociation prevents chromosome segregation, engendering lexA -independent, lethal filamentation of cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.