Abstract
The release of highly toxic beryllium in sludge (BCS) produced by physico-chemical treatment of beryllium-containing wastewater from Be smelting production has become a growing concern with the widespread use of Be in the defense industry. This work investigated the potential mobility of Be in BCS. The toxicity characteristic leaching procedure (TCLP) of BCS showed that the amount of leached Be was up to 202 mg L−1, which exceeded the regulated limit by nearly 10,000 times. The chemical fractionation analysis further revealed that the excessive amount of Be leached from BCS was contributed to the high content of acid-soluble fraction and reducible fraction of Be, which accounted for over 70% of the Be content. The results obtained from mineralogical automatic analyzer (MLA) showed that gypsum (23.23%) and epidote (19.55%) were the two major mineralogical phases of BCS. Both were small and loosely structured agglomerated particles with a D50 of 6.61 μm and 3.31 μm. ToF-SIMS results revealed that the Be distribution on the surface of BCS particles was relatively dispersed, with no aggregation or encapsulation. Be co-precipitated with gypsum and chlorite in the form of unstable Be(OH)2, which attached to the surface of these small particles. The unstable state of Be and the small size, loose structure and high liberation of the host material phases are the main reasons for the high leaching mobility of Be. The results of the risk assessment indicated that BCS posed an extremely high potential ecological risk, with Be being the most significant contributor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.