Abstract

Eucalyptol and β-cyclocitral are 2 main compounds in cyanobacterial volatile organic compounds and can poison other algae. To uncover the toxic mechanism of the 2 compounds, the cell growth, photosynthetic abilities, H2O2 production, caspase-like activities, nuclear variation and DNA laddering were investigated in Chlamydomonas reinhardtii treated with eucalyptol and β-cyclocitral. Eucalyptol at ≥ 0.1 mM and β-cyclocitral at ≥ 0.05 mM showed toxic effects on C. reinhardtii cells, and 1.2 mM eucalyptol and 0.4 mM β-cyclocitral killed the whole of the cells during 24 h. During the death process, the photosynthetic pigment gradually degraded, and Fv/Fm gradually declined, indicating that the death is not a necrosis due to the gradual disappearance of the physiological process. In the treatments with 1.2 mM eucalyptol and 0.4 mM β-cyclocitral, H2O2 content burst at 10 min and 30 min, respectively. Caspase-9-like and caspase-3-like were activated, and cell nucleuses concentrated firstly and then broke with prolonging the treatment time. Meanwhile, DNA showed laddering after 1 h, and was gradually cleaved by Ca2+-dependent endonucleases to mainly about 100–250 bp fragments. These hallmarks indicated that eucalyptol and β-cyclocitral may poison other algal cells by inducing programmed cell death triggered by the increased H2O2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.