Abstract

The toxic effects of two brominated diphenyl ethers (BDE), BDE-47, and BDE-183, on a benthic oligochaete tubificid, Monopylephorus limosus were studied under laboratory conditions. Investigated responses included survival, growth, and protein expression profiles, at BDE concentrations of 1, 10, 100, and 700ng/g on a dry soil weight basis, with isooctane as the carrier solvent. Body weight losses among treatments were insignificant after 8 weeks of exposure. The 8-wk LC50 of BDE-47 and -183 were 2311 and 169ng/g, respectively. By applying multivariate analysis techniques, protein expression patterns were compared and correlated with stressful sources of long-term culture, carrier solvent, BDE-47 and -183. The treatment of 8-wk 100ng/g BDE-47 was most closely clustered to the 10ng/g BDE-183 treatment, based on the 40 examined protein spots. This indicated that BDE-183 was more potent to M. limosus, than was BDE-47. The 2-wk and 8-wk controls clustered into different groups indicating the occurrence of physiological changes due to long-term laboratory culture. Additionally, solvent effect was shown by grouping the isooctane carrier to different clusters. With further characterization by principle component analysis, it was found that the separation was mainly contributed by the 2nd principal-component. And, the primarily inhibitory variation was at spots 2 (UMP-CMP kinase) and 40 (plasma retinol-binding protein precursor) in the 8-wk groups. On the contrary, protein spots 16 (cell division control protein 2 homolog) and 24 (mitochondrial DNA mismatch repair protein) showed stimulatory variation. In all, the observed proteomic responses suggest that BDEs disrupted metabolic function in M. limosus and multivariate analysis tool offers significant potential for the assessment of various stress sources at biochemical level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.