Abstract

The toxic effects of different concentrations of Triclosan (TCS) (1-128 μg/L) on Daphnia magna (D. magna) were investigated by acute (48 h) and chronic (21-day) toxicity tests. The response of antioxidase system and Phase I metabolism process of D. magna exposed to TCS were investigated by measuring a series of biomarkers including glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), 7-ethoxyresorufin O-deethylase (EROD), Erythromycin N-demethylase (ERND) and Aminopyrine N-demethylase (APND). The 48 h LC50 of TCS was 330 μg/L for D. magna. In the chronic test, total number of neonates per female, body length and the intrinsic rate of natural increase (r) of D. magna increased at the low exposure concentrations (1-16 μg/L) and decreased at the high concentrations (64-128 μg/L), while the total number of molting per adult decreased continually. The GST and CAT activities showed no significant increase in all treatments, and SOD activities were induced after 24-h exposure and inhibited after 48-h exposure at 4-128 μg/L of concentrations. The MDA content increased after 6-h exposure but decreased after 48-h exposure at 4-128 μg/L. EROD activities initially increased after 6-h exposure, but decreased after 24 and 48-h exposure, ERND and APND activities showed a similar temporal pattern among different treatments groups. SOD, MDA and APND were sensitive to TCS, thus they are suitable as potential biomarkers for the exposure to TCS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call