Abstract

Rare earth elements (REEs) are emerging as an anticipated pollution in the environment due to their active use in many areas. However, the effects of REEs on the photosynthesis of rice have not been thoroughly explored. Therefore, this study emphasizes how high levels of La(III) affect the thylakoid membrane of rice seedlings, thereby inhibiting photosynthesis and growth. Here, we reported that rice plants treated with La(III) exhibited an increase in La accumulation in the leaves, accompanied by a decrease in chlorophyll content and photosynthetic capacity. La(III) exposure decreased Mg content in leaves, but possibly increased other nutrients including Cu, Mn, and Zn through systemic endocytosis. K-band and L-band appeared in the fluorescence OJIP transients, indicating La(III) stress destroyed the donor and receptor sides of photosystem II (PSII). Numerous reaction centers (RC/CSm) were inactivated by La(III) treatment, which resulted in a reduction in electron transport capacity (decreased ETo/RC and ETo/CSm) and an increase in the dissipation of the excess excitation energy by heat (increased DIo/RC and DIo/CSm). The BN-PAGE analysis of thylakoid membrane protein complexes showed that La(III) induced the degradation of supercomplexes, PSII core, LHCII, PSI core, LHCI, and F1-ATPase binding Cyt b6f complex. Collectively, this study revealed that La(III) causes significant degradation of thylakoid membrane proteins, thereby promoting the decomposition of photosynthetic complexes, ultimately destroying the chloroplast structure and reducing the photosynthetic performance of rice seedlings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.