Abstract

Cystic echinococcosis is a severe parasitic disease that commonly affects the liver and causes abscesses or rupture into the surrounding tissues, leading to multiple complications, such as shock, severe abdominal pain, and post-treatment abscess recurrence. Currently, there are no efficient measures to prevent these complications. We previously confirmed that arsenic trioxide (As2O3) exhibited in vitro cytotoxicity against Echinococcus granulosus protoscoleces. In the present study, we aimed to explore the mechanism of As2O3-induced E. granulosus protoscoleces apoptosis. After exposing E. granulosus protoscoleces to 0, 4, 6, and 8 μM As2O3, reactive oxygen species (ROS) level was detected by fluorescence microscopy; superoxide dismutase (SOD), and caspase-3 activities were measured; intracellular Ca2+ was detected by flow cytometry; GRP-78 and caspase-12 protein levels were measured by western blot analysis. Our results showed that the expression of caspase-3 was gradually increased and the expression of SOD was gradually decreased in As2O3-treated groups of protoscoleces. Simultaneously, fluorescence microscopy and flow cytometry showed that the ROS level and the intracellular Ca2+ level were increased in a time- and dose-dependent manner. Western blot analysis showed that the expressions of GRP-78 and caspase-12 were higher in As2O3-treated groups than in the control group. These results suggest that As2O3-induced apoptosis in E. granulosus protoscoleces is related to elevation of ROS level, disruption of intracellular Ca2+ homeostasis, and endoplasmic reticulum stress. These mechanisms can be targeted in the future by safer and more effective drugs to prevent recurrence of cystic echinococcosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.