Abstract

Contamination of disposable medical masks has become a growing problem globally in the wake of Covid-19 due to their widespread use and improper disposal. Three different mask layers, namely the outer layer, the meltblown (MB) filler layer and the inner layers release three different types of microplastics, whose physical and chemical properties change after prolonged environmental weathering. In this study, physical and chemical changes of mask microplastics before and after aging were characterized by different characterization techniques. The toxic effect and mechanism of aged mask microplastics on Escherichia coli (E. coli) were studied by measuring the growth inhibition of mask microplastics, the change in ATPase activity, the change in malondialdehyde content and reactive oxygen species production, and the release of the chemical composition of exopolymeric substances (EPS). The microplastics of the aged MB filter layer had the most significant inhibitory effect on E. coli growth, reaching 19.2 % after 36 h. Also, under the influence of mask microplastics, ATPase activity of E. coli was inhibited and a large amount of EPS was released. The chemical composition of EPS has also changed. This study proposed the possible toxicity mechanism of mask microplastics and the self-protection mechanism of E. coli, and provided a reference for future research on the toxic effects of mask microplastics on environmental organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call