Zinc pyrithione (ZPT) is widely recognized for its beneficial properties as an antifouling, antibacterial, and antifungal agent. Despite its positive industrial contributions, ZPT has been proven to exhibit toxicity towards various ecosystems, particularly affecting marine life. However, there is still a dearth of comprehensive research on ZPT toxicity and its toxicological mechanism in reproductive systems of aquatic organisms. In our study, we conducted a thorough analysis and unveiled a multitude of abnormalities in zebrafish sperm and testicular tissue caused by ZPT exposure, including a dose-dependent diminishing of testosterone levels, various sperm deformities, decreased sperm concentration and motility, and ROS-induced testicular tissue DNA damage. In addition, our study suggested that ZPT-induced testicular damage is associated with heightened oxidative stress, apoptosis, and possible hyperpolarization of the mitochondrial membrane. Through RNA-seq analysis, a total of 409 DEGs associated with ZPT-induced testicular injury were identified, and the hub gene was determined using a protein-protein interaction network (PPI). The genes and pathways uncovered in this study point to potential mechanisms of ZPT exposure on sperm and testicular injury in zebrafish.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call