Abstract

Nanoplastics can be easily absorbed into the human body through inhalation, ingestion, and skin contact due to their physicochemical property. Despite the numerous studies postulating the potential adverse effects of environmental exposure to nanoplastics on neurodevelopment, the effects of nanoplastics and their regulatory mechanisms have not been specifically elucidated. We focused on the toxic effects of nanoplastics on brain developmental processes by investigating their interactions with brain organoids. Our findings indicated that nanoplastics exposure caused cellular dysfunction and structural disorders. Nanoplastics adversely affected critical cells in brain organoids, resulting in the reduction of neural precursor cells and neuronal cells. The expression of neural cadherin was also inhibited, which might lead to impaired axonal extension and formation of synaptic connections. In addition, transcriptome sequencing was performed to study the effects of different concentrations of nanoplastics on the signaling pathway. The qRT-PCR analysis confirmed that nanoplastics exposure resulted in decreased expression of several genes related to the Wnt signaling pathway, suggesting that nanoplastics may adversely affect embryonic brain growth through the suppression of the expression of these genes. Our research findings shed light on the deleterious effects of nanoplastics on embryonic brain development and have significant implications for the field of environmental toxicology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call