Abstract
Effects of free surface on development of turbulent boundary layer and wake fields were investigated. By measuring flow field around a surface piercing cylinder in various advance speed conditions in a towing tank, free surface effects were identified. A towed underwater Stereoscopic Particle Image Velocimetry (SPIV) system was used to measure the flow field under free surface. The cross section of the test model was water plane shape of the Wigley hull, of which longitudinal length and width were 1.0 m and 100 mm, respectively. With sharp bow shape and slender cross section, flow separation was not expected in two-dimensional flow. Flow fields near the free-surface and in deep location that two-dimensional flow field was expected were measured and compared to identify free-surface effects. Some planes perpendicular to longitudinal direction near the model surface and behind the model were selected to track development of turbulent boundary layer. Froude numbers of the test conditions were from 0.126 to 0.40 and corresponding Reynolds numbers were from 395,000 to 1,250,000. In the lowest Froude number condition, free-surface wave was hardly observed and only free surface effects without surface wave could be identified while violent free-surface behavior due to wave-induced separation dominated the flow fields in the highest Froude number condition. From the instantaneous velocity fields, Time-mean velocity, turbulence kinetic energy, and flow structure derived by proper orthogonal decomposition (POD) were analyzed. As the free-surface effect, development of retarded wake, free-surface waves, and wave-induced separation were mainly observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.