Abstract

Simultaneous towed-streamer marine acquisition has the advantages of reducing the total time requirements and costs of surveys. However, the seismic records obtained are blended seismic data, so the successful deblending of such data is the key to this method. In this paper, we propose an effective deblending method with a new thresholding operator based on the shaping regularization framework in the contourlet domain. The new thresholding operator consists of an adaptive Bayesian threshold and a new thresholding function. Because of its multiresolution, locality, and directionality properties, the contourlet transform can effectively capture geometrical structures, which are the main features in natural images. To make the traditional Bayesian threshold adaptive in the contourlet domain, we propose a scale adjustment factor, a direction adjustment factor, and an attenuation factor to modify the threshold, and we also adopt local adaptive elliptic windows to estimate the standard deviations of useful signals; eventually, we obtain an adaptive Bayesian threshold. Furthermore, the new thresholding function can overcome the shortcomings of the existing soft and hard thresholding functions. Experimental results demonstrate that our method can effectively separate blended data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.