Abstract

It is evident that surface electromyography (sEMG) based human-machine interfaces (HMI) have inherent difficulty in predicting dexterous musculoskeletal movements such as finger motions. This paper is an attempt to investigate a plausible alternative to sEMG, ultrasound-driven HMI, for dexterous motion recognition due to its characteristic of detecting morphological changes of deep muscles and tendons. A multi-channel A-mode ultrasound lightweight device is adopted to evaluate the performance of finger motion recognition; an experiment is designed for both widely acceptable offline and online algorithms with eight able-bodied subjects employed. The experiment result presents that the offline recognition accuracy is up to 98.83% ± 0.79%. The real-time motion completion rate is 95.4% ± 8.7% and online motion selection time is 0.243 ± 0.127 s. The outcomes confirm the feasibility of A-mode ultrasound based wearable HMI and its prosperous applications in prosthetic devices, virtual reality, and remote manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.