Abstract

The extreme electron withdrawing properties of the perfluoropyridinoxy ligand –OC5F4N were used for the preparation of new (weakly) coordinating borate and aluminate anions of the type [E(OC5F4N)4]– (E = B or Al). These new anions are based on the potent parent Lewis acids E(OC5F4N)3, which possess exceptionally high calculated fluoride ion affinities (FIAs) of 500 and 587 kJ mol–1 for E = B and Al respectively. For aluminum, this extreme Lewis acidity dominates the chemistry and from mixtures of the neutral polymeric Lewis acid [Al(OC5F4N)3]n, the five‐ and six‐coordinate complexes Al(OC5F4N)3(OEt2)2 (1) and [Al(OC5F4N)2(µ‐OC5F4N) (NCMe)2]2 (2) were crystallized upon addition of ether or MeCN. The aluminate salts M[Al(OC5F4N)4] (M = Li or K) were prepared from the reaction between the alcohol 4‐HO–C5F4N and either LiAlH4 or K[AlEt4] respectively. The aluminate anion [Al(OC5F4N)4]– remains Lewis acidic coordinating small donor molecules forming [Al(OC5F4N)4(L)]– (L = THF or NMe3) and even supports formation and structural characterisation of the aluminum dianion containing salt [Na(OEt2)2][Na][Al(OC5F4N)5] (8). The from NaBH4 and 4‐HO–C5F4N accessible borate salt Na[B(OC5F4N)4] shows increased kinetic stability in comparison to the aluminum analogue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call