Abstract
The Pfaffian state, which may describe the quantized Hall plateau observed at Landau level filling fraction $\ensuremath{\nu}=\frac{5}{2}$, can support topologically-protected qubits with extremely low error rates. Braiding operations also allow perfect implementation of certain unitary transformations of these qubits. However, in the case of the Pfaffian state, this set of unitary operations is not quite sufficient for universal quantum computation (i.e. is not dense in the unitary group). If some topologically unprotected operations are also used, then the Pfaffian state supports universal quantum computation, albeit with some operations which require error correction. On the other hand, if certain topology-changing operations can be implemented, then fully topologically-protected universal quantum computation is possible. In order to accomplish this, it is necessary to measure the interference between quasiparticle trajectories which encircle other moving trajectories in a time-dependent Hall droplet geometry [cond-mat/0512072].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.