Abstract
While a popular representation of 3D data, point clouds may contain noise and need filtering before use. Existing point cloud filtering methods either cannot preserve sharp features or result in uneven point distributions in the filtered output. To address this problem, this paper introduces a point cloud filtering method that considers both point distribution and feature preservation during filtering. The key idea is to incorporate a repulsion term with a data term in energy minimization. The repulsion term is responsible for the point distribution, while the data term aims to approximate the noisy surfaces while preserving geometric features. This method is capable of handling models with fine-scale features and sharp features. Extensive experiments show that our method quickly yields good results with relatively uniform point distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.