Abstract

Career mobility analysis aims at understanding the occupational movement patterns of talents across distinct labor market entities, which enables a wide range of talent-centered applications, such as job recommendation, labor demand forecasting, and company competitive analysis. Existing studies in this field mainly focus on a single fixed scale, investigating either individual trajectories at the micro-level or crowd flows among market entities at the macro-level. Consequently, the intrinsic cross-scale interactions between talents and the labor market are largely overlooked. To bridge this gap, we propose UniTRep , a novel unified representation learning framework for cross-scale career mobility analysis. Specifically, we first introduce a trajectory hypergraph structure to organize the career mobility patterns in a low-information-loss manner, where market entities and talent trajectories are represented as nodes and hyperedges, respectively. Then, for learning the market-aware talent representations , we attentively propagate the node information to the hyperedges and incorporate the market contextual features into the process of individual trajectory modeling. For learning the trajectory-enhanced market representations , we aggregate the message from hyperedges associated with a specific node to integrate the fine-grained semantics of trajectories into labor market modeling. Moreover, we design two auxiliary tasks to optimize both intra-scale and cross-scale learning with a self-supervised strategy. Extensive experiments on a real-world dataset clearly validate that UniTRep can significantly outperform state-of-the-art baselines for various tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call