Abstract

Complex-valued neural networks have attracted increasing attention in recent years, while it remains open on the advantages of complex-valued neural networks in comparison with real-valued networks. This work takes one step on this direction by introducing the complex-reaction network with fully-connected feed-forward architecture. We prove the universal approximation property for complex-reaction networks, and show that a class of radial functions can be approximated by a complex-reaction network using the polynomial number of parameters, whereas real-valued networks need at least exponential parameters to reach the same approximation level. For empirical risk minimization, we study the landscape and convergence of complex gradient descents. Our theoretical result shows that the critical point set of complex-reaction networks is a proper subset of that of real-valued networks, which may show some insights on finding the optimal solutions more easily for complex-reaction networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.