Abstract

Precision results on cosmic-ray electrons are presented in the energy range from 0.5 GeV to 1.4 TeV based on 28.1 million electrons collected by the Alpha Magnetic Spectrometer on the International Space Station. In the entire energy range the electron and positron spectra have distinctly different magnitudes and energy dependences. The electron flux exhibits a significant excess starting from 41.2 GeV compared to the lower energy trends, but the nature of this excess is different from the positron flux excess above 25.2 GeV. Contrary to the positron flux, which has an exponential energy cutoff of 810 GeV, at the 5$\sigma$ level the electron flux does not have an energy cutoff below 1.9 TeV. In the entire energy range the electron flux is well described by the sum of two power law components. The different behavior of the cosmic-ray electrons and positrons measured by AMS is clear evidence that most high energy electrons originate from different sources than high energy positrons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.