Abstract

Blended positive electrodes consisting of mixtures of LiMn2O4 spinel (LMO) and layered LiNi0.5Mn0.3Co0.2O2 (NMC) have been studied by coupling electrochemical testing to operando synchrotron based X-ray absorption and powder diffraction experiments to shed light on their redox mechanism. Blending NMC with LMO results in enhanced energy density at high rates, with the composition with 25% LMO exhibiting the best electrochemical performance. Tests with a special electrochemical setup detecting the contribution of each blend component indicate that the effective current load on each blend component can be significantly different from the nominal rate and also varies as function of SoC. Operando studies enabled to monitor the evolution of oxidation state and changes in the crystal structure, which are in agreement with the expected behaviour of the individual components considering the material specific electrochemical current loads. These findings should contribute to a deeper mechanistic understanding of blended electrodes to foster a rational driven approach for their design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.