Abstract

This article treats the recovery of hot-carrier degraded nMOSFETs by annealing in a nitrogen ambient. The recovery rate is investigated as a function of the annealing temperature, where the recovery for increasing temperatures is in agreement with the passivation processes. At the original post-metal anneal temperature of T = 400 °C, the device's original performance is fully restored. Higher temperatures induce a permanent, unrecoverable change to the devices, manifested in a gradual VT shift. The recovery rate is found to be independent of both the transistor gate length and the cooling rate (quench, slow and stepped cooling) upon annealing. These findings are used to gain further understanding of the mechanisms behind the recovery of hot-carrier damage. The recovery rate exhibits Arrhenius behavior and the recovery data are consistent with Stesmans' recovery model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.