Abstract

The light-induced surface modification of a thin film of poly-(disperse orange-3-methylmethacrylate) is investigated computationally using atomistic molecular dynamics simulations specifically tailored to include photoisomerization dynamics. For a model surface consisting of a periodic pattern of alternating irradiated and dark spots, it is shown that repeated photoisomerization in the irradiated areas initially leads to a local temperature increase and a raised surface profile accompanied by a migration of molecules away from the bright spots. After switching off the light source and letting the system cool down, this leads to an inversion of the surface profile, i.e., dips in the bright spots and bumps in the dark spots. To separate the effect of photoisomerization from the pure heating effect, a second simulation is performed in which no photoisomerization is allowed to occur in the bright spots, but the equivalent amount of energy is introduced there locally in the form of heat. This also leads to a raised surface in these areas; however, no outward migration of molecules is observed and the surface pattern practically vanishes when the system is subsequently cooled back to room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.