Abstract
The present work continues the series of experimental investigations undertaken in order to elucidate the mechanisms controlling elastic and anelastic properties of the β 1′ martensitic phase of Cu-based shape memory alloys. The paper reports an attempt to distinguish between ‘dislocation’ and ‘interface’ mechanisms of the internal friction in the β 1′ martensitic phase of Cu–Al–Ni single crystals. Two types of experiments have been performed. First, the ultrasonic strain amplitude-independent and amplitude-dependent internal friction (ADIF) of a monovariant specimen for temperatures 90–300 K is carefully re-examined. Second, in situ measurements of the ADIF and of the influence of ultrasonic oscillations on the plastic deformation (acoustoplastic effect) were carried out during quasistatic deformation of a quenched polyvariant specimen. Experimental results support a dislocation rather than an interface mechanism of anelasticity, at least at ultrasonic frequencies and moderate strain amplitudes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.