Abstract
Random Fourier Features (RFF) demonstrate well-appreciated performance in kernel approximation for large-scale situations but restrict kernels to be stationary and positive definite. And for non-stationary kernels, the corresponding RFF could be converted to that for stationary indefinite kernels when the inputs are restricted to the unit sphere. Numerous methods provide accessible ways to approximate stationary but indefinite kernels. However, they are either biased or possess large variance. In this article, we propose the generalized orthogonal random features, an unbiased estimation with lower variance. Experimental results on various datasets and kernels verify that our algorithm achieves lower variance and approximation error compared with the existing kernel approximation methods. With better approximation to the originally selected kernels, improved classification accuracy and regression ability is obtained with our approximation algorithm in the framework of support vector machine and regression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.