Abstract

Hashtags are useful for categorizing and discovering content and conversations in online social networks. However, assigning hashtags requires additional user effort, hampering their widespread adoption. Therefore, in this paper, we introduce a novel approach for hashtag recommendation, targeting English language tweets on Twitter. First, we make use of a skip-gram model to learn distributed word representations (word2vec). Next, we make use of the distributed word representations learned to train a deep feed forward neural network. We test our deep neural network by recommending hashtags for tweets with user-assigned hashtags, using Mean Squared Error (MSE) as the objective function. We also test our deep neural network by recommending hash tags for tweets without user-assigned hashtags. Our experimental results show that the proposed approach recommends hashtags that are specific to the semantics of the tweets and that preserve the linguistic regularity of the tweets. In addition, our experimental results show that the proposed approach is capable of generating hash tags that have not been seen before.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.