Abstract

AbstractEarly phases of green material development can be accelerated by identifying driving factors that control material properties to understand potential tradeoffs. Full investigation of fabrication variables is often prohibitively expensive. We propose a pared‐down design of experiments (DOE) approach to identify driving variables in limited data scenarios using tunable polydimethylsiloxane (PDMS) foams made via sacrificial templating as an example system. This new approach systematically determines the dependencies of porosity, transparency, and fluid flow by varying the template particle size and packing while using a more sustainable solvent. Factor screening identified template particle size and packing density as the driving factors for foam performance by controlling pore size and interconnectivity. The framework developed provides a robust, foundational understanding of how to green and tune a novel material's properties using an efficient and effective exploration of the design space. Recommendations for applying this method to a broad suite of experiments are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.