Abstract

Targeted α-particle therapy offers the potential for more specific tumor cell killing with less damage to surrounding normal tissue than β-emitters because of the combination of short path length (50-80 μm) with the high linear energy transfer (100 keV μm(-1)) of this emission. These physical properties offer the real possibility of targeted (pre-targeted) α-therapy suitable for the elimination of minimal residual or micrometastatic disease. Targeted and pre-targeted radioimmunotherapy (RIT) using α-emitters such as (212)Bi (T(1/2) = 1.01 h) and (212)Pb (T(1/2) = 10.6 h) has demonstrated significant utility in both in vitro and in vivo model systems. (212)Pb, a promising α-particle emitting source, is the longer-lived parent nuclide of (212)Bi, and serves as an in vivo generator of (212)Bi. The radionuclide has been successfully used in RIT and pre-targeted RIT and demonstrated an enhanced therapeutic efficacy in combination with chemotherapeutics, such as gemcitabine and paclitaxel. The following perspective addresses the modes of radionuclide production, radiolabelling and chelation chemistry, as well as the application of (212)Pb to targeted and pre-targeted radiation therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.