Abstract

A new class of self-powered thin film radiation detectors is experimentally explored via their IV-curve characteristics. These detectors are parallel-plane microstructures composed of disparate atomic number (Z) thin-film electrodes separated by air gaps. Large radiation-induced electron currents (RIC) are observed for zero external voltage bias. Compared to ionization chambers (composed of macroscopic non-disparate low-Z electrodes), this anomalous behavior is due to two independent effects: traversal of fast electrons leaking from the high-Z cathodes and the auto-collection of ionization electrons from the air gap due to the presence of contact potential. The zero voltage current reaches up to 80% of the saturation current measured for non-zero bias voltages. The magnitude of saturation currents increases with the total anode and cathode atomic numbers. The stopping potentials (i.e., external voltage bias resulting in zero RIC current) correspond to the differences in the electrodes’ work functions (the contact potential) modified by the contributions from the fast electron current formed by the leaking electrons. These features make the thin film detector attractive for applications in x-ray medical or industrial imaging, dosimetry and radiation protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call