Abstract

In this article we analyze how syngas produced in a renewable way can replace fossil-fuel based syngas production and thereby play an essential role in the decarbonization of industry. We show that in essentially all industrial applications renewable H2 and/or CO can replace syngas from fossil fuel feedstocks, and quantify the flows of these chemical building blocks required for the transformation of industry towards a net-zero emitting sector. We also undertake a techno-economic analysis, in which we demonstrate that under specific assumptions for the learning rates of some of the key process components, renewable syngas can become cost-competitive with that produced from fossil fuels. Cost competitiveness, however, only materializes for four of the five routes when natural gas prices are at least around 3 €/GJ and carbon taxes increase from 90 €/tCO2 today to 300 €/tCO2 in 2050.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.