Abstract

The preparation of molecularly imprinted polymers (MIP) based on non-covalent interactions has become a widely used technique for creating highly specific sorbent materials predominantly used in separation chemistry. A crucial factor in a successful imprinting protocol is the optimisation of the template/functional monomer interaction in the pre-polymerisation mixture, eventually leading to a maximum of high-affinity binding sites in the resulting polymer matrix. In order to develop more efficient preparation technologies for imprinted polymers, two separate pre-polymerisation complexes were investigated by NMR spectroscopic techniques in order to identify the types of interactions occurring in the pre-polymerisation mixture, and their implications for the subsequently formed imprinted polymer. In particular, hydrophobic effects have been followed by NMR spectroscopy and their contribution to the selectivity of the resulting MIP has been investigated. The 2,4-D imprint system is used as an example to fundamentally study whether observations at the pre-polymerisation stage correlate with properties of the finally prepared MIP, and which parameters govern success of an imprinting protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.