Abstract

As professional antigen presenting cells (APCs) capable of eliciting primary immune responses among naïve T cells, dendritic cells (DCs) offer an attractive target for immune intervention. While some strategies for vaccination have sought to deliver antigens direct to DCs&nbsp;<em>in vivo</em>, others have pulsed DCs with target antigens&nbsp;<em>ex vivo</em>&nbsp;prior to administration. Indeed, numerous clinical studies of cancer immunotherapy have been conducted over the past two decades based on this approach, most of them benefitting from the ease with which DCs may be differentiated&nbsp;<em>in vitro</em>&nbsp;from the peripheral blood monocytes of individual patients. Nevertheless, while therapies exploiting monocyte-derived DCs (moDCs) have been shown to be safe, clinical outcomes have been disappointing, efficacy having been limited by factors including the type of DCs used and the source of tumor antigens. Here we review recent developments in identifying DC subsets with more favorable properties for use in cancer vaccination, with particular emphasis on CD141<sup>+</sup>&nbsp;DCs capable of antigen cross-presentation and discuss alternative sources, such as induced pluripotent stem cells (iPSCs), amenable to manufacture at scale. Furthermore, we assess how different sources of tumor antigens may complement this approach for the design of next generation DC vaccines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.