Abstract
Resolving light sources below the diffraction limit is a fundamental task both for astronomy and microscopy. Several recent works, analysed this problem through the lens of quantum parameter estimation theory and proved that the separation between two point sources can be estimated at the quantum limit using intensity measurements after spatial-mode demultiplexing. However, most previous works have either consider low-intensity, or thermal sources. To broaden the applicability of this approach, it is important to extend these results to more general light sources. To this goal, we will present an analytical expression for the Quantum Fisher Information, determining the ultimate resolution limit, for the separation between two sources in an arbitrary Gaussian state. Applying this result to different quantum states, we can shine some light on some relevant questions. We can for example explore the role of partial coherence considering displaced and correlated thermal states, or investigate the importance of quantum correlations by considering squeezed light. In addition to the ultimate quantum limit, we will discuss a simple estimation technique, requiring access only to the mean value of a linear combination of demultiplexed intensity measurements, which is often sufficient to saturate these limits, and can easily be adapted to incorporate the most common noise sources. Finally, we will present our experimental setup that allows for the generation of the images of two sources with different photon statistics, as well as for spatial mode demultiplexing and we will discuss the first practical implementations if the above mentioned estimation techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.