Abstract

The way in which disturbances from human land use are patterned in space across scales can have important consequences for efforts to govern human/environment with regard to, but not only, invasive spread-dispersal processes. In this context, we explore the potential of disturbance patterns along a continuum of scales as proxies for identifying the geographical regions prone to spread of invasive plant species. To this end, we build on a previous framework of cross-scale disturbance patterns, exercising the approach for the Apulia region (South Italy). We first review procedures and results introducing disturbance maps and sliding windows to measure composition (amount) and configuration (contagion) of disturbance patterns both for real and simulated landscapes from random, multifractal and hierarchical neutral models. We introduce cross-scale disturbance profiles obtained by clustering locations from real and simulated landscapes, which are used as foils for comparison to the real landscapes on the same pattern transition space. Critical percolation thresholds derived from landscape observations and theoretical works are discussed in order to identify critical scale domains. With reference to the actual land use and invasive alien flora correlates of disturbance patterns, a cross-scale “invasibility” map of the Apulia region is derived, which shows sub-regions and scale domains with different potentials for the invasive spread of undesirable species. We discuss the potential effect of contagious and non-contagious disturbances like climate change and why multifractal-like disturbance patterns might be more desirable than others to counter biological invasions in a multi-scale and multi-level context of adaptive planning, design and management of disturbance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.