Abstract

The root cause of the photochemical ethylene vinyl acetate (EVA) discoloration in photovoltaic (PV) modules was investigated. Laminates containing EVA foils with a systematic variation of the additive formulation, i.e. the crosslinking agents, ultraviolet (UV) absorber, hindered amine light stabilizers and antioxidants, were subjected to UV aging. The influence of the additive combination on the photochemical aging of EVA was investigated by Raman spectroscopy, Fourier transform infrared spectroscopy and UV/visible spectroscopy. The amount of EVA discoloration was found to be strongly depending on the additive formation. An important impact of the antioxidant in terms of chromophore formation inhibition could be found. Surprisingly, the highly stabilized EVA foils showed higher discoloration rates as well as a more intense fluorescence background in the Raman spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.