Abstract

The production of pure water plays a pivotal role in enabling sustainable green hydrogen production through electrolysis. The current industrial approach for generating pure water relies on energy-intensive techniques such as reverse osmosis. This study unveils a straightforward method to produce pure water, employing real-world units derived from previously simulated and developed laboratory devices. This demonstrated system is cost-effective and boasts low energy consumption, utilizing membrane distillation (MD) driven by the waste heat harnessed from photovoltaic (PV) panels. In a previous study, modeling simulations were conducted to optimize the multi-layered MD system, serving as a blueprint for the construction of prototype devices with a suitable selection of materials, enabling the construction of field-testable units. The most efficient PV-MD device, featuring evaporation and condensation zones constructed from steel sheets and polytetrafluoroethylene (PTFE) membranes, is capable of yielding high-purity water with conductivity levels below 145 μS with high flux rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call