Abstract

Vehicular networks aim to provide a communication framework for moving vehicles, road infrastructure and pedestrians. Such kind of networks is the entrance to a new era of services that will make areas such as security and safety, information, transactions, entertainment and sustainability (green transportation) more efficient than they are today, especially in the upcoming era of autonomous vehicles and self-driving cars. However, the severe nature of vehicular environments makes efficient inter-vehicular communication very difficult to achieve. Vehicular Delay-Tolerant Networks (VDTN), as these networks are called, have very sparse, intermittent connections, and the lack of a fixed topology gives rise to one of the main challenges that they face: packet routing. A range of routing algorithms has been proposed in recent years to optimize communication in vehicular networks, and significant progress has been made in the matter but the quest for the optimal performance is still ongoing. In this paper, we explore a deep learning approach to the routing problem in VDTN, proposing a routing architecture and algorithm based on Deep Neural Networks that helps routers make packet forwarding decisions based on the current conditions of its surroundings. In order to assess the performance of the proposed architecture, simulations were run showing important gains in terms of network overhead and hop count with respect to popular routers, while maintaining acceptable packet delivery rates and average delivery delays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.