Abstract

Patients suffering from dementia with Lewy body (DLB) often see complex visual hallucinations (CVH). Despite many pathological, clinical, and neuroimaging studies, the mechanism of CVH remains unknown. One possible scenario is that top-down information is being used to compensate for the lack of bottom-up information. To investigate this possibility and understand the underlying mathematical structure of the CVH mechanism, we propose a simple computational model of synaptic plasticity with particular focus on the effect of selective damage to the bottom-up network on self-reorganization. We show neurons that undergo a change in activity from a bottom-up to a top-down network framework during the reorganization process, which can be understood in terms of state transitions. Assuming that the pre-reorganization representation of this neuron remains after reorganization, it is possible to interpret neural response induced by top-down information as the sensation of bottom-up information. This situation might correspond to a hallucinatory situation in DLB patients. Our results agree with existing experimental evidence and provide new insights into data that have hitherto not been experimentally validated on patients with DLB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call