Abstract

The ever-increasing demand of portable electronics and electric vehicles has consistently promoted the development of lithium-ion batteries (LIBs) in the direction of higher energy density, higher safety, and faster charging. However, present high-energy LIBs are insufficient to sustain extra-fast power input without adverse consequences, which is mainly affected by the lithium (Li) plating on graphite electrode. The goal of this review is to enable graphite anode to support higher current and improve safety by ameliorating undesired Li plating from fundamentals and detections. Hence, the interaction, containing solid electrolyte interphase formation, Li+ intercalation/plating behavior, between graphite and Li+ be discussed in depth. Besides, the cognitive process of Li+ intercalation/plating kinetics as well as the inner mechanisms of Li plating especially in 3 extreme conditions (high state-of-charge, high charging-rate, and low temperature) are highly desirable to investigate Li plating comprehensively. Meanwhile, issues induced by Li plating, detection methods of Li deposition and knowledge gaps are identified for the follow-up research directions of Li plating in LIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call