Abstract
The impact of the random sequence on Genetic Algorithms (GAs) is rarely discussed in the community so far. The requirements of GAs for Pseudo Random Number Generators (PRNGs) are analyzed, and a series of numerical experiments of Genetic Algorithm and Direct Search Toolbox computing three different kinds of typical test functions are conducted.An estimate of solution accuracy for each test function is included when six standard PRNGs on MATLAB are applied respectively. A ranking is attempted based on the estimated solution absolute/relative error. It concludes that the effect of PRNGs on GAs varies with the test function; that generally speaking, modern PRNGs outperform traditional ones, and that the seed also has a deep impact on GAs. The research results will be beneficial to stipulate proper principle of PRNGs selection criteria for GAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.