Abstract

Although a large amount of acoustic indicators have already been proposed in the literature to evaluate the hypokinetic dysarthria of people with Parkinson’s Disease, the goal of this work is to identify and interpret new reliable and complementary articulatory biomarkers that could be applied to predict/evaluate Parkinson’s Disease from a diadochokinetic test, contributing to the possibility of a further multidimensional analysis of the speech of parkinsonian patients. The new biomarkers proposed are based on the kinetic behaviour of the envelope trace, which is directly linked with the articulatory dysfunctions introduced by the disease since the early stages. The interest of these new articulatory indicators stands on their easiness of identification and interpretation, and their potential to be translated into computer based automatic methods to screen the disease from the speech. Throughout this paper, the accuracy provided by these acoustic kinetic biomarkers is compared with the one obtained with a baseline system based on speaker identification techniques. Results show accuracies around 85% that are in line with those obtained with the complex state of the art speaker recognition techniques, but with an easier physical interpretation, which open the possibility to be transferred to a clinical setting.

Highlights

  • Dysarthria is defined as "a group of related speech disorders that are due to disturbances in muscular control of the speech mechanism resulting from impairment of any of the basic motor processes involved in the execution of speech" [1]

  • Throughout the study of some cases, this section describes some of the evidences of the speech of Parkinson’s Disease (PD) patients that have been used as a basis to develop the proposed acoustic biomarkers

  • Inspired by the speaker recognition techniques we have evaluated the performance of several PD speech detectors

Read more

Summary

Introduction

Dysarthria is defined as "a group of related speech disorders that are due to disturbances in muscular control of the speech mechanism resulting from impairment of any of the basic motor processes involved in the execution of speech" [1]. Dysarthria makes difficult verbal output due to lack of coordination, paralysis, or weakness of the speech musculature. Dysarthria is caused by damage in the central or peripheral nervous system. This damage may be present since birth, as in the cases of muscular dystrophy or cerebral palsy, or may take place later in life caused by one of the different conditions that can affect the nervous system, including multiple sclerosis, Parkinson, Huntington’s disease, brain tumours, stroke, injury, etc.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call